Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003; 289: 3095-105.
Article PubMed Google Scholar
Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluating outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006; 163: 28-40.
Article PubMed Google Scholar
Fava M, Kendler KS. Major depressive disorder. neuron. 2000; 28: 335-41.
Article CAS PubMed Google Scholar
Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by polymorphism in the 5-HTT gene. Science. 2003; 301: 386-9.
Article CAS PubMed Google Scholar
Leistner C, Menke A. The hypothalamic-pituitary-adrenal axis and stress. Handb Clin Neurol. 2020; 175: 55-64.
Article PubMed Google Scholar
Aguilera G, Liu Y. The molecular physiology of CRH neurons. Anterior Neuroendocrinol. 2012; 33: 67-84.
Article CAS PubMed Google Scholar
Jurek B, Slattery DA, Hiraoka Y, Liu Y, Nishimori K, Aguilera G, et al. Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3. J Neurosci. 2015; 35: 12248-60.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Coello AG, Grinevich V, Aguilera G. Involvement of transducer-regulated protein activity of the cAMP response binding element on corticotropin-releasing hormone transcription. Endocrinology. 2010; 151: 1109-18.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Knobloch HS, Grinevich V, Aguilera G. Stress induces parallel changes in corticotropin-releasing hormone (CRH) transcription and nuclear translocation of transducer of regulated cAMP response element-binding activity 2 in hypothalamic CRH neurons. J Neuroendocrinol. 2011; 23: 216-23.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Poon V, Sanchez-Watts G, Watts AG, Takemori H, Aguilera G. Salt-inducible kinase is involved in the regulation of corticotropin-releasing hormone transcription in rat hypothalamic neurons. Endocrinology. 2012; 153: 223-33.
Article CAS PubMed Google Scholar
Martin F, Nunes S, Marin MT, Laorden ML, Kovacs KY, Milanes MV. Involvement of PVN noradrenergic transmission in CREB activation, TORC1 levels, and pituitary-adrenal axis activity during morphine withdrawal. PLoS One. 2012;7:e31119.
Article PubMed PubMed Central Google Scholar
Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, et al. TORC: transducers of regulated CREB activity. Mol Cell. 2003; 12: 413-23.
Article CAS PubMed Google Scholar
Takemori H, Kajimura J, Okamoto M. The TORC-SIK cascade regulates CREB activity through the leucine zipper core domain. FEBS J. 2007; 274: 3202–9.
Article CAS PubMed Google Scholar
Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, Satoh T, et al. Silencing of the constitutively active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J. 2006; 273: 2730–48.
Article CAS PubMed Google Scholar
Takemori H, Okamoto M. Regulation of CREB-mediated gene expression by salt-inducible kinase. J Steroid Biochem Mol Biol. 2008; 108: 287–91.
Article CAS PubMed Google Scholar
Saura CA, Cardinaux JR. Emerging roles of CREB-regulated transcriptional coactivators in brain physiology and pathology. Trends Neurosci. 2017; 40: 720-33.
Article CAS PubMed Google Scholar
Jiang B, Wang H, Wang JL, Wang YJ, Zhu Q, Wang CN, et al. Hippocampal salt-induced kinase 2 plays a role in depression through the CREB-regulated transcriptional coactivator 1-cAMP response element binding to brain-derived neurotrophic factor pathway. Biological psychiatry. 2019; 85: 650-66.
Article CAS PubMed Google Scholar
Wang Z, Takemori H, Halder SK, Nonaka Y, Okamoto M. Cloning of a novel SNF1/AMPK family kinase (SIK) from high-salt-treated rat adrenal gland. FEBS Lett. 1999; 453: 135-9.
Article CAS PubMed Google Scholar
Choi S, Kim W, Chung J. Drosophila salt-inducible kinase (SIK) regulates starvation resistance through cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). J Biol Chem. 2011; 286: 2658-64.
Article CAS PubMed Google Scholar
Liu Y, Tang W, Ji C, Gu J, Chen Y, Huang J, et al. The selective SIK2 inhibitor ARN-3236 produces strong antidepressant-like efficacy in mice via the hippocampal CRTC1-CREB-BDNF pathway. Front Pharm. 2021;11:624429.
Google Scholar Article
Xu D, Sun Y, Wang C, Wang H, Wang Y, Zhao W, et al. Hippocampal mTOR signaling is required for the antidepressant effects of paroxetine. Neuropharmacology. 2018; 128: 181–95.
Article CAS PubMed Google Scholar
Gao TT, Wang Y, Liu L, Wang JL, Wang YJ, Guan W, et al. LIMK1/2 in mPFC plays a role in chronic stress-induced depressive effects in mice. Int J Neuropsychopharmacol. 2020; 23: 821–36.
Article CAS PubMed PubMed Central Google Scholar
Tang WQ, Liu Y, Ji CH, Gu JH, Chen YM, Huang J, et al. Virus-mediated reduction of LKB1 activity in the mPFC attenuates stress-induced depressive-like behavior in mice. Biochem Pharm. 2022;197:114885.
Article CAS PubMed Google Scholar
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress to model depression in rodents: a meta-analysis of model reliability. Neurosci Biobehav Rev. 2019; 99: 101–16.
Article PubMed Google Scholar
Wang W, Liu W, Duan D, Bai H, Wang Z, Xing Y. Chronic social defeat stress mouse model: current insight into its behavioral deficits and modifications. Behav Neurosci. 2021; 135: 326-35.
Article CAS PubMed Google Scholar
Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS drugs. 2011; 25: 913-31.
Article CAS PubMed Google Scholar
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Hippocampal neurogenesis in adults buffers stress responses and depressive-like behavior. Nature. 2011; 476: 458-61.
Article CAS PubMed PubMed Central Google Scholar
Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014; 38: 173–92.
Article CAS PubMed Google Scholar
Liu J, Meng F, Dai J, Wu M, Wang W, Liu C, et al. The BDNF-FoxO1 axis in the medial prefrontal cortex modulates depression-like behavior induced by chronic unpredictable stress in postpartum female mice. Mol Brain. 2020; 13:91.
Article CAS PubMed PubMed Central Google Scholar
Jiang Z, Zhu Z, Zhao M, Wang W, Li H, Liu D, et al. H3K9me2 regulation of BDNF expression in the hippocampus and medial prefrontal cortex is involved in the depressive phenotype induced by maternal separation in male rats. Psychopharmacology (Berl). 2021; 238: 2801–13.
Article CAS PubMed Google Scholar
Seasholtz AF, Thompson RC, Douglass JO. Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Mol Endocrinol. 1988; 2: 1311–9.
Article CAS PubMed Google Scholar
Adler GK, Smas CM, Fiandaca M, Frim DM, Majzoub JA. Regulated human corticotropin-releasing hormone gene expression by cyclic AMP. Mol Cell Endocrinol. 1990; 70: 165-74.
Article CAS PubMed Google Scholar
Guardiola-Diaz HM, Boswell C, Seasholtz AF. The cAMP-responsive element in the corticotropin-releasing hormone gene mediates transcriptional regulation by depolarization. J Biol Chem. 1994; 269: 14784–91.
Article CAS PubMed Google Scholar
Cheng YH, Nicholson RC, King B, Chan EC, Fitter JT, Smith R. Corticotropin-releasing hormone gene expression in primary placental cells is modulated by cyclic adenosine 3′,5′-monophosphate. J Clin Endocrinol Metab. 2000; 85: 1239-44.
CAS PubMed Google Scholar
Liu Y, Kamitakahara A, Kim AJ, Aguilera G. Cyclic adenosine 3′, 5′-monophosphate response element binding protein phosphorylation is necessary but not sufficient for corticotropin-releasing hormone transcriptional activation. Endocrinology. 2008; 149: 3512-20.
Article CAS PubMed PubMed Central Google Scholar
Hashimoto YK, Satoh T, Okamoto M, Takemori H…
Add Comment